

E-IMR 2022年度ワークショップ 2022/12/22

単色・白色中性子を活用した 物性材料研究 藤田 全基 東北大学 金属材料研究所 材料評価・解析研究ユニット

茨城県東海村 白色中性子源 高品質データ 多彩な測定環境 単色中性子源 高効率測定 簡便な利用 Bird-View of J-PARC 01 ©J-PARC

大強度陽子加速器施設物質・生命科学実験施設 2019年4月からMLFの一般課題で利用者を受け入れている。 並行して、偏極中性子実験を行うための環境整備を、コミッ ショニングで進めている。

偏極度解析システム

東北大学中性子散乱分光器

(P) POLANOハ偏極中性子チョッパー分光器

(A) AKANE 三軸中性子分光器

(T) TOPAN 偏極中性子三軸分光器

(II) IIERMES高能率中性子粉末回折装置

研究用原子炉施設

三台の中性子散乱装置を設置、共同利用に供している 2010年11月以降、原子炉の運転停止が続いていたが、 2021年2月に再稼働し、7月から供用運転が再開された。

KINKEN Powder Diffractometer for High Efficiency and High Resolution Measurements

HERMES(高能率中性子粉末回折装置)

高品質データ取得を可能とする高利便性回折装置

HERMESで可能なこと

- □ 磁気構造、結晶構造の決定
- □ 重い元素を含む化合物中の軽元素の構造決定
- □ イオン伝導経路の決定
- □ 微少量試料(50mg)の構造解析
- □ 液体、アモルファスなどの広範囲S(Q)測定

Monochrometer	Ge(331) vert. focused Height: 20 cm, mosaic: 10' $2\theta_{\rm M} = 116^{\circ} (\lambda = 2.202 \text{ Å})$				
Collimations	1st: 12' 2nd: open 3rd: 18' ~ 24'				
Angle range	2 < 2θ _s < 160° (0.1 < Q < 5.6 Å ⁻¹)				
Distances	Monochro-sample: 250 cm Sample-detector: 135 cm				
Detector	³ He-type detector (150 tubes)				
Temperature range	K4K-GM (4 K – RT), high-T refrigerator (10 – 700 K)				

装置概要

Advanced KINKEN Triple-Axis Neutron Spectrometer

AKANE (金研三軸型中性子分光器) 測定環境開発・トライアルユース・教育兼用装置

AKANEで可能なこと

□ 特殊環境下測定(高圧・強磁場・高電圧等)
 □ デバイス・測定手法開発等の試験
 □ バルク試料の結晶性評価
 □ 簡単な磁気構造、結晶構造の決定
 □ 秩序変数の温度変化測定(臨界指数の決定)
 □ 素励起(フォノン,マグノン等)の観測

装置概要

Monochrometer	Ge(311)/(511) vert. focused Height: 20 cm, mosaic: 10'~15'		
Analyzer	PG002 ($\eta_A = 30' \sim 40'$)		
Collimations	1st: guide(20') 2nd, 3rd, 4th: 15', 30', 60', blank		
Angle range	$ \begin{array}{l} \mbox{Ge}(311): \ 2\theta_{M} = (\mbox{fixed}) \ 72.6^{\circ} \\ (2.02 \ \mbox{\AA}), \ Q_{max} \sim 5.1 \ \mbox{\AA}^{-1}, \\ -5 \leq 2\theta_{S} \leq +110 \ (\pm 0.01), \\ -90 \leq 2\theta_{A} \leq +90 \ (\pm 0.01), \end{array} $		
Beam size	20mm-w x 50mm-h		
Detector	³ He-type tube detector φ25mm		
Temperature range	K4K-GM (4 K – RT), high-T refrigerator (10 – 700 K)		
Software	FILMAN-J, TEMCON		

Tohoku-University Polarization Analysis Neutron Spectrometer

TOPAN(東北大学中性子散乱分光器)

偏極中性子による先端磁性研究を推進する装置

TOPANで可能なこと

装置概要

Monochrometer	PG(002), mosaic: 40' - 60' double-focused, Heusler(111)		
Analyzer	PG(002) ($\eta_A = 30' \sim 40'$) double-focused		
Collimations	1st: 15', 30' 2nd, 3rd: 10, 15', 30', 60', 100' 4th: 15', 30', 60', 100'		
Angle range	$\begin{array}{l} 15 \leq 2\theta_{\rm S} \leq 78^{\circ},\\ -5 \leq \theta_{\rm S} \leq 120^{\circ},\\ 0 \leq 2\theta_{\rm A} \leq 80^{\circ} \end{array}$		
Beam size	40mm-w x 80mm-h (max)		
Detector	³ He-type tube detector φ2"x 100mm		
Temperature range	GM refrigerator & orange cryostats (1.5 – 600 K)		
Software	FILMAN-J, TEMCON		

POLANO - Polarized Neutron Spectrometer -

装置概要

Incident energy (unpolarized)	1-500 meV 1-100 meV		
energy resolution Q resolution	$\Delta E / Ei \ge 4\%$ @elastic 1 to 2% = $\Delta Q/ki$		
Detector coverage Horizontal Vertical	–20° to 120° –8° to 8°		
Beam size	50mm-w x 50mm-h (max)		
Detector	³ He-type tube detector 1D-PSD [ϕ = 19 mm, L = 600 mm]		
Intensity@100meV	~5×10 ¹⁴ n/sec/cm ² /1MW		

Construction

started

Shielding

Blocks

Catwalk

Vacuum camber

Detector

Banks

2017/6

First neutron beam received

中性子利用プラットフォームの構築 - PATH-

中性子装置群のプラットフォーム化とメリハリのある利用

中性子研究の推進と利用の拡大 - PATH-

テーマ:1. **構造研究**を軸とする中性子利用研究の普及 2. <mark>偏極中性子</mark>利用と中性子技術開発による<mark>先端磁性研究</mark>の推進

サイエンスのピークの引き上げと裾野の拡大 を図る

伝導経路・スピン密度分布の可視化

構造解析+最大エントロピー法による推定が行われている

次世代型全固体電池の開発が期待される

磁性材料の機能発現の機構解明につながる

軽元素の位置・占有率の決定

T'構造RE₂CuO₄における超伝導の発現

酸素元素の位置・占有率と超伝導の関係

銅酸化物高温超伝導体

T'構造:従来の物質と異なり、元素置換し なくても超伝導化するため注目されている

中性子粉末回折パターン/Rietveld解析

PCO		as-sinterd		annealed	
<i>a</i> (Å)		3.9603(5)		3.962(2)	
$c(\text{\AA})$		12.2374(3)		12.2412(2)	
Atom	Wyck.	z	Occ.	Z.	Occ.
Pr	4e	0.3515(1)	2	0.3518(1)	2
Cu	2a		1		1
O(1)	4c		2		2
O(2)	4d		1.99(4)		1.98(4)
O(3)	4e	0.062(3)	0.03(1)	-	0
$R_{\rm wp}$ (%)		7.7		7.3	
$R_{\rm p}$ (%)		6.1		5.6	

スピンダイナミクス研究 スピン流の伝導機構の解明(スピン流の高効率輸送)

非平衡定常状態でのスピンの運動を分離測定する

Y. Nambu at al., PRL. 125, 027201 (2020)

最先端の偏極中性子デバイスと研究テーマ で先導する中性子スピン偏極物性科学

偏極デバイス:低エネルギーから高エネルギーの中性子へ適応が進む

1951 First polarizing crystals (magnetite Fe₃O₄, Co₉₂Fe₈) C.G. Shull (*Phys Rev* **83**, 333; **84**, 912) ³Heスピンフィルタ・

1959 First polarized beam measurements (of magnetic form factors of Ni and Fe), R. Nathans et al (Phys Rev Lett, 2, 254)

東北大学中性子散乱装置群を活用した 物性・材料研究の例

多種多彩な物質・材料が研究対象となる

まとめ

単色・白色中性子を活用した物性材料研究

中性子と中性子ビームの特徴と利点

- ・スピンを有する → 物質の磁気情報が得られる
- ・高い軽元素識別能力、同位体識別能力

軽元素機能性材料や磁性材料の開発、物性解明に重要な手法

東北大学は4台の中性子散乱装置を有している

- ・JRR-3:回折装置、分光器
- ・J-PARC MLF:高エネルギー偏極分光器(新手法の導入) 静的構造と動的状態を見る中性子プラットフォームを構築

