Ultrafine Porous Intermetallic Compounds Fabricated by High-Temperature Liquid Metal Dealloying for Electrochemical Hydrogen Production

<u>O Ruirui Song</u>, Jiuhui Han, Masayuki Okugawa, Rodion Belosludov, Takeshi Wada, Jing Jiang, Daixiu Wei, Akira Kudo, Yuan Tian, Mingwei Chen, Hidemi Kato

東北大学金属材料研究所 加藤研究室

先端エネルギー材料理工共創研究センター(E-IMR)

複合モジュール・社会実装研究ユニット/特任助教

Dec. 22, 2022

Research Background

Sustainable energy future

How to develop electrocatalysts ?

Physical review letters 101.16 (2008): 166601.

Self-supported 3D bicontinuous open porosity

- Large surface area
 - Efficient mass transport
 - Good electrical conductivity

Thermal stability

- Geometric arrangement
- Fixed atomic position
- Homogeneous distribution

Brewer Intermetallic compound

Brewer intermetallic compounds [1]Materials chemistry and physics, 22(1989), 1-26. Hypo-d-electronic components: Hf, Zr, Nb, Ti, V, Mo, Cr, W Hyper-d-electronic components: Co , Ni, Pt, Pd, Fe, Ir

Strong hypo-hyper-d-electronic interaction:

Adaptable M-H bond/ enhanced hydrogen evolution.

MoNi₄/MoO₂@Ni

Morphology evolution in liquid metal dealloying

Nanoporous μ -Co₇Mo₆ after LMD at 973 K for 120s

Porous Mo, Fe, $Cr_{50}Mo_{50}$, μ -Co₇Mo₆ and μ -Fe₇Mo₆

The ligament sizes varied on the remained composition.
The phases of ligament were obtained as designed.

Song, Ruirui, et al. Nature communications 13.1 (2022): 1-12.

Ligament size scaled with homologous temperature

 $E_a = KT_m$

E_a: Activation energy of diffusion T_m: Melting temperature K: Constant

Diffusion in Solids-Fundamentals, Methods, Materials, Diffusion-Controlled Processes

• A distinct deviation from the conventional scaling relation is observed for nanoporous μ -Co₇Mo₆ and μ -Fe₇Mo₆.

Diffusivities calculated by molecular dynamics simulations

Calculated by Masayuki Okugawa Sensei, Osaka University

900 K–1200 K for 200 ps with zero external pressure (NPT), with molten Mg.

14 nm \times 15 nm \times 8 nm model

Einstein relation combined with mean square displacement (MSD)

 $D = \frac{\langle R^2 \rangle}{6\tau}.$ R: The total displacement composed of many individual displacements r_{i.} τ : the time for displacement, τ =t-t_{0.}

Diffusivities calculated by molecular dynamics simulations

Calculated by Masayuki Okugawa Sensei, Osaka University

The obtained average diffusivities were plotted against $1/T_{H}$.

 Diffusivities of Co and Mo in ordered µ-Co₇Mo₆ are impeded compared with the Co-hcp and bcc-Mo.
 The intermetallic phase provides a large energy barrier for the diffusion of Co and Mo atoms.

Diffuse atom	hcp-Co	bcc-Mo	Co in μ-Co ₇ Mo ₆	Mo in μ-Co ₇ Mo ₆
Activation energy (kJ mol ⁻¹)	59.8	84.2	84.7	102.5

Evolution of ultrafine nanoporous intermetallic compounds

- High temperature in LMD overcome the barrier of selectively dissolving of Ni;
- Concurrent formation of μ-Co₇Mo₆ self-assembly evolved into bicontinuous porous structure;
- Large kinetic barrier for surface diffusion in μ -Co₇Mo₆ impeded further coarsening.

Electrocatalytic performance in hydrogen production

- Low-current-density property : intrinsic activity.
- Higher current densities : ion and gas transport on active sites.
- The 3D bicontinuous pore: enhancing mass transport.

Durability of self-supported np-Co₇Mo₆ electrocatalyst

• A negligible shift in the HER polarization curves after 5000 cycles

• There is no apparent current decay over the long-term test for 48 h.

Conclusions

Fabrication of nanoporous Mo-based intermetallic compound

• Porous μ -Co₇Mo₆ sized in ~30.8 nm was obtained at 973 K for 120s.

Application for hydrogen evolution reaction catalyst

- Nanoporous µ-Co₇Mo₆ can balance the intrinsic activity and mass transport at high current densities.
- Self-supported nanoporous µ-Co₇Mo₆ is among the best performances reported for non-precious Mo-based HER electrocatalysts thus far.

Supported by Japan Society for the Promotion of Science (JSPS) KAKENHI (Grant Nos. 21J12719, Ruirui Song)

Next

- Research on the mechanism of reaction front coupled with intermetallic phase forming in LMD.
- Developing nanoporous intermetallic compounds electrocatalysts for other electrochemical reaction.